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INTRODUCTION 

Unmanned aerial vehicles (UAVs), commonly known as drones, have seen a meteoric rise in both professional 
and recreational applications on Earth. Their ability to navigate challenging terrains, capture breathtaking aerial 
views, and assist in critical missions, such as search and rescue or scientific data collection, underscores their 
invaluable utility. As our exploratory ambitions extend beyond our home planet, the prospect of deploying these 
versatile machines on other celestial bodies becomes an increasingly tangible reality. 

A testament to this extraterrestrial ambition is NASA's Ingenuity, a small helicopter that accompanied the 
Perseverance rover to Mars. Ingenuity's successful flights on Martian terrain have proven that aerial exploration 
is feasible on planets other than Earth, opening a realm of possibilities for aerial reconnaissance on distant 
worlds. 

While Mars has piqued significant interest, Saturn's largest moon, Titan, emerges as an even more intriguing 
candidate for aerodynamic explorations. Unlike Mars, with its thin atmosphere, or the Moon, with no 
atmosphere at all, Titan boasts a dense atmosphere, richer than that of Earth. Coupled with its landscape of 
lakes, rivers, dunes, and mountains, Titan is a trove of scientific mysteries waiting to be unraveled. 

The selection of Titan over other celestial bodies for this study is informed by these unique attributes. While 
other planets and moons present their own sets of challenges and curiosities, Titan's atmospheric density offers 
the tantalizing possibility of sustained aerodynamic flight, a scenario markedly different from the brief hops 
achievable on Mars. 

This report delves into the heart of this challenge. Through rigorous simulation, we contrast the flight dynamics 
of a quadcopter on Earth with its potential behavior on Titan. Our aim is to provide a comprehensive 
understanding of the opportunities and challenges of quadcopter flight on Titan, setting the groundwork for 
potential future missions. 

By building on the pioneering steps of Ingenuity on Mars and extending our gaze to the dense atmosphere of 
Titan, this study seeks to push the boundaries of what we believe is possible for UAVs in our solar system. 

THE TITANWING PROJECT 

Motive: 
The primary impetus for this research stems from the broader aim of expanding our horizons of extraterrestrial 
exploration. As the success of rovers has ushered in a new era of surface exploration, the next frontier lies in 
understanding and mastering the aerial dimension. While surface rovers like Perseverance provide invaluable 
data, their range and perspective are inherently limited. Aerial vehicles, with their ability to cover vast areas and 
access hard-to-reach terrains, promise a new vantage point to study alien landscapes. Titan, with its unique 
atmospheric properties and varied terrain, offers an unprecedented opportunity to employ these aerial assets, 
potentially revolutionizing our understanding of its complex environmental and geological systems. 

Drone Configurations: 
When considering UAV designs suitable for Titan, several configurations emerge as contenders: 



 

1. Standard Quadcopter: This familiar design consists of four rotors and offers a balance of stability and 
maneuverability. Its symmetrical layout ensures redundancy, which could be crucial in an extraterrestrial 
environment where reliability is paramount. 

2. Hexacopter: With six rotors, this configuration offers increased lift capacity, which might be 
advantageous given the denser atmosphere of Titan. The added rotors also provide greater redundancy, 
enhancing reliability. 

3. Tilt-Rotor: A design that allows the rotors to tilt can transition between vertical and horizontal flight. 
This could be especially useful for fast traversal over Titan's vast landscapes, offering a blend of the 
hover capability of a drone with the speed and efficiency of an airplane. 

4. Single Rotor Helicopter: Similar to the Mars Ingenuity, this design is simplistic and might be easier to 
control. However, its single point of failure and potential difficulties in generating sufficient lift in 
Titan's dense atmosphere make it a less favorable option. 

5. Gas Enveloped Drones: Given the lower gravity and dense atmosphere of Titan, drones that leverage 
buoyancy, akin to blimps or balloons, with propellers for maneuverability might be an interesting 
proposition. 

Selection for Titan: 
After analyzing the various configurations, the Hexacopter emerges as the prime candidate for deployment on 
Titan. Its multiple rotors grant it the lift required to navigate Titan's dense atmosphere efficiently. The 
redundancy offered by six rotors ensures that even in the event of a rotor malfunction, the drone can remain 
airborne and possibly return to a base for repairs, a feature critical in the unforgiving and remote environment of 
an alien moon. Additionally, the enhanced stability of the hexacopter design, combined with its agility, allows 
for precise maneuvers, making it adept at both scientific reconnaissance and capturing detailed imagery. 

While each drone configuration holds its unique advantages, the primary objective remains to ensure reliable, 
sustained, and efficient flight in Titan's distinct atmospheric conditions. The Hexacopter, with its balance of 
power, redundancy, and maneuverability, stands out as the most suitable candidate for this ambitious endeavor. 

HEXACOPTER DYNAMIC MODELLING 

The dynamics of a hexacopter, like other multi-rotor platforms, are derived from the interaction of its rotors 
with the surrounding environment. The hexacopter possesses six rotors, usually arranged symmetrically in a 
planar configuration. This arrangement affects the drone's ability to generate forces and moments to control its 
position and orientation. 

Assumptions: 

For simplification, the following assumptions are made: 

 The hexacopter is a rigid body. 

 The rotors produce thrust linearly proportional to the square of their speed. 

 All six propellers of the TitanWing Drone are placed orthogonally along with the body frame. 

Coordinate Frames: 

Two primary coordinate frames are defined to describe the hexacopter motion: 

 Inertial Frame (𝑅ூ): Fixed to the Earth and generally considered as the reference frame. 

 Body Frame (𝑅஻): Fixed to the center of mass of the hexacopter, with axes aligned to the drone's 
principal axes, found in Figure 1. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Rotation Matrix R 

A rigid spacecraft can be described as a system of particles where the relative distances are fixed during time. 
Figure 2 is an illustration of the drone with an inertial (𝑅ூ) and body (𝑅஻) frames shown. The 𝑋, 𝑌 𝑎𝑛𝑑 𝑍 axes 
represent the 𝚤, 𝚥 and 𝑘ሬ⃑  axes respectively. The center of the inertial reference frame 𝐼 ̅is located at Titan’s CM. 
The 𝑘ሬ⃑ ூ̅ axis is along the earth’s axis of rotation while the 𝚤ூ̅ axis points toward the vernal equinox and the 𝚥ூ̅ axis 
completes the right-handed frame. The satellite’s body frame, 𝐵ത , is defined by 𝚤஻ത , 𝚥஻ത  and 𝑘ሬ⃑ ஻ത  axes. The Euler 
angles are the rotational angles about the body axes defined as followed:  

𝜓 𝑎𝑏𝑜𝑢𝑡 𝑘ሬ⃑ ௕ത = [𝑅௭(𝜓)] 
𝜃 𝑎𝑏𝑜𝑢𝑡 𝚥௕ത = [𝑅௬(𝜃)] 

𝜙 𝑎𝑏𝑜𝑢𝑡 𝚤௕ത = [𝑅௫(𝜙)] 
This is a 3 → 2 → 1 rotation that will be used to find the direction cosine matrix (DCM).  

Figure 1. The schematic structure of the hexacopter and rotational directions of the propellers. 



 

 

Figure 2. Inertial reference frame (I), and body frame (B). 

 

The direction cosine matrix, equation (1), can be found by implementing the rotation sequence mentioned 
above.  

[𝑐]ூ̅ ஻ത = [𝑅௫(𝜙)] ∙ ൣ𝑅௬(𝜃)൧ ∙ [𝑅௭(𝜓)] = ൥

1 0 0
0 𝐶𝑜𝑠𝜙 𝑆𝑖𝑛𝜙
0 −𝑆𝑖𝑛𝜙 𝐶𝑜𝑠𝜙

൩ ∙ ൥
𝐶𝑜𝑠𝜃 0 −𝑆𝑖𝑛𝜃

0 1 0
𝑆𝑖𝑛𝜃 0 𝐶𝑜𝑠𝜃

൩ ∙ ൥
𝐶𝑜𝑠𝜓 𝑆𝑖𝑛𝜓 0

−𝑆𝑖𝑛𝜓 𝐶𝑜𝑠𝜓 0
0 0 1

൩ 

[𝑐]ூ̅ ஻ത = ൥

Cos𝜃Cos𝜓 Cos𝜃Sin𝜓 −Sin𝜃
Cos𝜓Sin𝜃Sin𝜙 − Cos𝜙Sin𝜓 Cos𝜙Cos𝜓 + Sin𝜃Sin𝜙Sin𝜓 Cos𝜃Sin𝜙
Cos𝜙Cos𝜓Sin𝜃 + Sin𝜙Sin𝜓 −Cos𝜓Sin𝜙 + Cos𝜙Sin𝜃Sin𝜓 Cos𝜃Cos𝜙

൩                  (1) 

The Rotation Matrix 𝑅஻
ூ  which is used to transform the body frame in terms of the inertial frame is given by 

equation (2).  

𝑅஻
ூ = ൥

Cos𝜃Cos𝜓 Cos𝜓Sin𝜃Sin𝜙 − Cos𝜙Sin𝜓 Cos𝜙Cos𝜓Sin𝜃 + Sin𝜙Sin𝜓
Cos𝜃Sin𝜓 Cos𝜙Cos𝜓 + Sin𝜃Sin𝜙Sin𝜓 −Cos𝜓Sin𝜙 + Cos𝜙Sin𝜃Sin𝜓

−Sin𝜃 Cos𝜃Sin𝜙 Cos𝜃Cos𝜙
൩                  (2) 

The orientation vector 𝜂 = [ 𝜙 𝜃 𝜓 ]் is formed using the three Euler angles, yaw angle 𝜓, pitch angle 𝜃, and 
roll angle 𝜙. The vector 𝜉 = [𝑥 𝑦 𝑧]் will denote the position of the vehicle in the inertial reference frame.   

Rigid Body Kinematics  

Hexacopter Kinematics 

To find the relationship between the position and velocities of the drone relative to the inertial reference frame, 
the Rotation Matrix 𝑅஻

ூ  can be used as shown in equation (3).  

ௗ

ௗ௧
ቈ
𝑥
𝑦
𝑧

቉ = 𝑅஻
ூ̇ ቈ

𝑢
𝑣
𝑤

቉ = ൥

Cos𝜃Cos𝜓 Cos𝜓Sin𝜃Sin𝜙 − Cos𝜙Sin𝜓 Cos𝜙Cos𝜓Sin𝜃 + Sin𝜙Sin𝜓
Cos𝜃Sin𝜓 Cos𝜙Cos𝜓 + Sin𝜃Sin𝜙Sin𝜓 −Cos𝜓Sin𝜙 + Cos𝜙Sin𝜃Sin𝜓

−Sin𝜃 Cos𝜃Sin𝜙 Cos𝜃Cos𝜙
൩ ቈ

𝑢
𝑣
𝑤

቉      (3)  

Similarly, we can find the relationship between Euler angles and the angular rates p, q, and r as follows (4): 

𝜔 = 𝑅௥𝜂̇ = ቈ
𝑝
𝑞
𝑟

቉ = ൥
1 0 −Sin𝜃
0 Cos𝜙 Sin𝜙Cos𝜃
0 −Sin𝜙 Cos𝜃Cos𝜙

൩ ቎

𝜙̇

𝜃̇
𝜓̇

቏                                            (4) 



 

Rigid Body Dynamics 

We will define the velocity of the hexacopter as 𝑉௜ and apply Newton’s second law 𝑓 = 𝑚𝑎 = 𝑚
ௗ௏೔

ௗ௧
. Here 𝑚 =

𝑚𝑎𝑠𝑠, 𝑓 = 𝑛𝑒𝑡 𝑓𝑜𝑟𝑐𝑒, and 
ௗ௏೔

ௗ௧
= 𝑡𝑖𝑚𝑒 𝑑𝑒𝑟𝑖𝑣𝑎𝑡𝑖𝑣𝑒 in the inertial reference frame.  The given equations for the 

translational equations of motion for an aircraft or a similar rigid body in a three-dimensional space need to be described. 
They describe the linear accelerations (𝑢̇, 𝑣̇, 𝑤̇) in the body-fixed coordinate system, which is typically defined as follows: 

 𝑢, 𝑣, and 𝑤 are the linear velocities along the body 𝑥 (longitudinal), 𝑦 (lateral), and 𝑧 (vertical) axes, 
respectively. 

 𝑝, 𝑞, and 𝑟 are the angular velocities (roll, pitch, and yaw rates, respectively) about the body 𝑥, 𝑦, and 𝑧 
axes, respectively. 

 𝑓௫ , 𝑓௬ , and 𝑓௭ are the forces acting on the body along the 𝑥, 𝑦, and 𝑧 axes, respectively. 

 𝑚 is the mass of the body/drone. 

The equations can be written as follows (5): 

𝑢̇ = 𝑟𝑣 − 𝑞𝑤 +
௙ೣ

௠

𝑣̇ = 𝑝𝑤 − 𝑟𝑢 +
௙೤

௠

𝑤̇ = 𝑞𝑢 − 𝑝𝑣 +
௙೥

௠

                                                                  (5) 

 

The first part of each equation (e.g., 𝑟𝑣 − 𝑞𝑤) represents the inertial forces due to the rotation of the body. The 
second part (1/𝑚)[𝑓𝑥, 𝑓𝑦, 𝑓𝑧] represents the acceleration due to the net external force acting on the body in the 
respective direction, divided by the mass of the body. This formulation is derived from Newton's second law of 
motion, which states that the acceleration of a body is directly proportional to the net force acting upon the body 
and inversely proportional to the body's mass. 

These equations are crucial in flight dynamics to understand and predict the motion of an aircraft or other aerial 
vehicles under various force and moment conditions. 

As noted, assuming the system of particles is a rigid body with body frame 𝐵ത , and the point B at the origin of the rigid 
body is assumed to be the CM, i.e., B = CM, then the torque of the rigid body about point B can be written as shown in 
equation (6).  

    𝜏஻ =  
ௗ

ௗ௧
ℎሬ⃑ ஻ூ 

ூ ഥூ̅

                                                                                 (6) 

Here ℎሬ⃑ ஻ூ
ூ̅  is the angular momentum of the system about point B with respect to the inertial reference frame 𝐼.̅ Since point 

B is assumed to be the CM of the system, the angular momentum can be written as follows in equation (2) where 𝐼ሚ஻ is the 
tensor of inertia about point B and 𝜔ூ ̅ ஻ത  is the angular velocity of the body with respect to the inertial reference frame 𝐼.̅ 
Note that mass moment of inertia terms is not assumed to be principal body axes (7). 

ℎሬ⃑ ஻ூ 
ூ ഥ =  𝐼ሚ஻  ∙ 𝜔ூ ̅ ஻ത                                                                                  (7) 

𝐼ሚ஻ = ቎

𝐼௫௫ −𝐼௫௬ −𝐼௫௭

−𝐼௬௫ 𝐼௬௬ −𝐼௬௭

−𝐼௭௫ −𝐼௭௬ 𝐼௭௭

቏ 



 

𝜔ூ ̅ ஻ത =  ൥

𝜔௫

𝜔௬

𝜔௭

൩ 

However, the hexacopter is completely symmetric about all three axes, therefore 𝐼௫௫ = 𝐼௬௬ = 𝐼௭௭ = 0. The 
inertia tensor, 𝐼ሚ஻, can be rewritten as shown in equation (8).  

 𝐼ሚ஻ = ቎

𝐼௫௫ 0 0
0 𝐼௬௬ 0

0 0 𝐼௭௭

቏                                                                            (8) 

Applied Forces and Torques 

The model has been enhanced to be more true-to-life by incorporating an analysis of air resistance and rotor 
drag, in addition to considering the gravitational and thrust forces from the rotor. The movements of the 
unmanned aerial vehicle (UAV) are dictated by either aerodynamic or mechanical influences, adding to the 
complexity of the UAV. To derive the mathematical model of the hexacopter, Newtonian mechanics is 
employed, resulting in the subsequent equations. The Newton-Euler equations integrate Newton's second law of 
motion and Euler's rotational equations of motion, describing the linear and angular dynamics of a rigid body. 
Mathematically, these are expressed as: 

൤
𝑚𝐼ଷ௫ଷ 0ଷ௫ଷ

0ଷ௫ଷ 𝐼𝐵෩
൨ ൤𝑉̇

𝜔̇
൨ + ൤

𝜔Λ(𝑚𝑉)

𝜔Λ(𝐼ሚ𝐵𝜔)
൨ = ൤

∑ 𝐹
∑ 𝜏

൨                                                    (9) 

Where: 

 𝑚 is the mass of the body. 

 𝐼ଷ௫ଷ is the 3 x 3 identity matrix. 

 0ଷ௫ଷ  is a 3 x 3 zero matrix. 

 𝐼ሚ஻ is the inertia tensor matrix. 

 𝑉 and 𝜔 are the linear and angular velocity vectors, respectively. 

 𝛬(𝜔) is the skew-symmetric matrix formulated from 𝜔. 

 𝑉̇ and 𝜔̇ are the linear and angular accelerations, respectively. 

 ∑ 𝐹 and ∑ 𝜏 are the resultant external force and moment (torque) acting on the body, respectively. 

 Linear and Angular Velocities and Accelerations (𝑽, 𝝎, 𝑉̇, 𝜔̇): These quantities describe the 
instantaneous rate of change of position and orientation of the rigid body. 

 Mass and Inertia Tensor (𝒎, 𝐼ሚ஻): These scalar and matrix terms, respectively, account for the 
distribution of mass in the body, influencing its resistance to translational and rotational accelerations. 

 Skew-symmetric Matrix (𝜦(𝝎)): This matrix, derived from the angular velocity vector, facilitates the 
representation of cross products in matrix multiplication form. 

 Resultant External Force and Moment (∑𝑭, ∑𝛕): These represent the total external influences acting 
on the body, inducing translational and rotational motion. 

We can further break down equation (9) into the following set of equations (10) & (11):  

∑ 𝐹஻ = 𝑚𝑉̇ + 𝜔 × 𝑚𝑉                                                              (10) 



 

∑ 𝜏 = 𝐼ሚ஻𝜔̇ + 𝜔 × 𝐼ሚ஻𝜔                                                               (11) 

Forces 

Gravitational Force Analysis 

In the context of hexacopter dynamics, the gravitational force, fundamentally directed towards the 
earth's/Titan’s center, imparts a pivotal influence on the system, especially when analyzed in the body-fixed 
coordinate frame. The vector denoting gravitational force (𝐹௚), equation (12), acting upon the hexacopter center 
of gravity can be articulated as: 

𝐹௚ = ൥
0
0

−𝑚𝑔
൩                                                                            (12) 

Here, 𝑚 symbolizes the hexacopter mass, and 𝑔 represents the gravitational acceleration, conventionally 
directed negatively along the body's z-axis in the body coordinate frame. This formulation succinctly 
encapsulates the gravitational force's impact on the hexacopter, providing a fundamental building block for 
further dynamic analyses and control design in aerial robotics. 

Thrust Force Analyses  

In a hexacopter, the propeller thrust dynamics are intricately linked with the rotational speeds of the propellers 
and certain aerodynamic coefficients. The thrust force generated by each propeller can be meticulously 
expressed by considering the propeller’s individual characteristics and rotational speeds. Given this, the thrust 
force vector 𝐹௣, equation (13), in the body frame can be articulated as: 

𝐹௜ = (Ωଵ
ଶ + Ωଶ

ଶ + Ωଷ
ଶ + Ωସ

ଶ + Ωହ
ଶ + Ω଺

ଶ) 

𝐹௉ =  𝑅஻
ூ ൥

0
0

∑ 𝐹௜
଺
௜ୀଵ

൩ = 𝑅஻
ூ [∑ 𝑏Ω௜

ଶ଺
௜ୀଵ ]                                                     (13) 

where: 

 𝐹௣ is the total propeller thrust force vector in the inertial frame. 

 𝑅஻
ூ  is the rotation matrix that transforms vectors from the body frame to the inertial frame. 

 𝐹௜ represents the thrust produced by the ith propeller, with 𝑖 ranging from 1 to 6, encompassing all 
propellers of the hexacopter. 

 𝑏 is the thrust coefficient, a factor that relates the square of the propeller rotational speed (Ω௜) to the 
generated thrust. 

 Ω௜ is the rotational speed of the ith propeller. 

In this formulation, ∑ 𝐹௜
଺
௜ୀଵ  or ∑ 𝑏Ω௜

ଶ଺
௜ୀଵ  computes the total thrust generated by all propellers, which is then 

oriented in the inertial frame through multiplication with 𝑅஻
ூ . This detailed representation is essential for 

accurate modeling and control of hexacopter, providing a mechanism to understand how variations in propeller 
speeds influence the total thrust and, consequently, the drone’s motion. This approach allows for an enriched 
understanding and control mechanism design by correlating propeller actuation with the resultant force 
generation and vehicle dynamics. 

Translational Drag Force  



 

The translational drag force 𝐹௧ pertains to the resistive forces experienced by the hexacopter as it translates 
through the air. This drag force is influenced by the hexacopter’s linear velocity and is typically modeled to be 
proportional to the velocity (or sometimes the square of the velocity) in each axis. This force does not directly 
influence the yaw motion but impacts the translational dynamics of the hexacopter, affecting its motion along 
the x, y, and z axes.  

The translational drag force, equation (14), is expressed as follows: 

𝐹௧ = 𝑘௙௧ ⋅ 𝑉                                                                            (14) 

Where: 

 𝐹௧ is the translational drag force vector. 

 𝑘௙௧ is a diagonal matrix representing drag coefficients along the x, y, and z axes, defined as:           𝑘௙௧ =

቎

𝑘௙௧௫ 0 0

0 𝑘௙௧௬ 0

0 0 𝑘௙௧௭

቏ 

 𝑉 is the linear velocity vector of the hexacopter, obtained as the derivative of the position vector, i.e., 
𝑉 = 𝜉̇, with 𝜉 = [𝑥, 𝑦, 𝑧]் representing the position. 

The drag force is derived based on empirical observations and fluid dynamics principles, observing that the 
force exerted by a fluid on a moving object is proportional to the velocity of the object. Specifically, 

𝐹௧೔
= −𝑘௙௧೔

𝑉௜                                                                            (15) 

for each axis 𝑖 ∈ {𝑥, 𝑦, 𝑧}. The negative sign indicates that the drag force opposes the motion.  

Rotor Drag Torque 

The rotor drag torque, 𝜏஽, is the torque induced due to the rotation of the propellers, which tends to generate a 
yawing motion (rotation about the vertical axis) of the hexacopter. In typical multi-rotor configurations, 
propellers are arranged such that adjacent ones rotate in opposite directions to minimize the net yawing 
moment. 

The rotor drag torque is derived by considering Newton's third law and the principle that the angular momentum 
imparted to the air by the propeller is equal and opposite to that imparted to the hexacopter. The individual rotor 
drag torque is modeled to be proportional to the square of the rotational speed, i.e., 

𝜏஽௜
= 𝐶𝐴𝜌𝑟ଶΩ௜

ଶ =  𝑘ௗΩ௜
ଶ                                                                     (16) 

Where, 𝐶 = 𝑑𝑟𝑎𝑔 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 of the propeller, 𝐴 =  𝑎𝑟𝑒𝑎 𝑜𝑓 𝑡ℎ𝑒 𝑏𝑙𝑎𝑑𝑒, 𝜌 =  𝑎𝑖𝑟 𝑑𝑒𝑛𝑠𝑖𝑡𝑦, 𝑟 =
 𝑏𝑙𝑎𝑑𝑒 𝑟𝑎𝑑𝑖𝑢𝑠 and Ω௜  =  𝑝𝑟𝑜𝑝𝑒𝑙𝑙𝑒𝑟 𝑎𝑛𝑔𝑢𝑙𝑎𝑟 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦. Summing these torques while considering the 
opposite rotation directions of alternate propellers, we obtain the total rotor drag torque, 𝜏஽.   

The total rotor drag torque, equation (17), can be expressed as: 

𝜏஽ = ቎

0
0

∑ (−1)௜𝜏஽௜
଺
௜ୀଵ

቏                                                                       (17) 

Here: 



 

 𝜏஽௜
 is the drag torque induced by the ith propeller. 

 𝑘ௗ is the drag coefficient, capturing the proportionality between the square of the propeller rotational 
speed and the generated drag torque. 

 Ω௜ is the rotational speed of the ith propeller. 

 𝜏஽ is the total drag torque vector acting about the body axes of the hexacopter. 

 The summation ∑ (−1)௜𝜏஽௜
଺
௜ୀଵ accounts for all propellers, with the alternating sign (−1)^𝑖 accounting 

for the opposing rotation direction of alternate propellers (assuming a configuration where neighboring 
propellers rotate in opposite directions). 

In a typical hexacopter configuration, propellers are arranged such that consecutive propellers rotate in opposite 
directions to counteract the yaw moment induced by each other. This arrangement minimizes the net yaw 
moment on the hexacopter, providing yaw stability and control. 

Torques 

In the context of a hexacopter, actuator actions primarily pertain to the thrusts generated by the six propellers. 
These thrusts, apart from inducing translational motion, also generate torques (moments) about the three 
principal axes of the hexacopter due to their application points being offset from the center of mass. 

1. Roll Torque (𝑀௫) 
 
Roll torque is generated due to the differential thrust produced by propellers that are positioned 
symmetrically about the roll axis (𝑥 − 𝑎𝑥𝑖𝑠). For calculating the roll torque 𝑀௫, which is the torque about 
the 𝑥 − 𝑎𝑥𝑖𝑠, we need to consider the component of the lever arm that is perpendicular to the 𝑥 − 𝑎𝑥𝑖𝑠 (i.e., 
in the 𝑦 − 𝑧 plane). If a propeller is located at an angle 𝜃 relative to the 𝑥 − 𝑎𝑥𝑖𝑠 in the 𝑦 − 𝑧 plane, then the 
effective lever arm length for calculating 𝑀௫ is: 
 

𝑙௘௙௙ = 𝑙𝑠𝑖𝑛(𝜃) 
 
Given that the hexacopter is symmetric and propellers are equally spaced, the propellers that have a 
component of their position in the 𝑦 − 𝑧 plane will be at an angle of 30° to the 𝑧 − 𝑎𝑥𝑖𝑠 (assuming 
propellers are numbered sequentially around the hexacopter). Thus, 𝜃 = 30° and: 
 

𝑙௘௙௙ = 𝑙𝑠𝑖𝑛(30°) =
𝑙

2
 

 
Considering a typical hexacopter configuration as mentioned above, the roll torque 𝑀௫, equation (18), can 
be derived as:  
 

𝑀௫ =
ି௟ భ்ି௟ మ்ି௟ య்ା௟ ర்ା௟ ఱ்ା௟ ల்

ଶ
                                                   (18) 

 
Here: 
 𝑙 is the distance from the propeller to the center of gravity along the y-axis. 
 𝑇௜ is the thrust produced by the ith propeller. 

The negative or positive signs and factors in front of each term depend on the configuration and rotation 
direction of each propeller. They ensure that a positive roll torque (according to the right-hand rule) 
corresponds to a roll motion to the right (clockwise when viewed from behind). 



 

2. Pitch Torque (𝑀௬) 
 
Similarly, pitch torque is due to the differential thrust produced by propellers positioned symmetrically 
about the pitch axis (𝑦 − 𝑎𝑥𝑖𝑠). In a common hexacopter configuration, the six propellers are equally 
spaced around the circumference of a circle, i.e., each propeller is 60° apart from its neighbors. This 
configuration often involves an alternating pattern of propeller rotation directions.  
 
The pitch torque 𝑀௬ is influenced by propellers that have a lever arm component along the 𝑦 − 𝑎𝑥𝑖𝑠. If we 
consider a coordinate system where the 𝑥 − 𝑎𝑥𝑖𝑠 is pointing forward and the 𝑦 − 𝑎𝑥𝑖𝑠 is pointing to the 
right (following the right-hand rule for a 𝑍 − 𝑢𝑝 coordinate system, see Figure 2), propellers 1 and 4 are 
located along the x-axis and thus do not contribute to 𝑀௬ due to their lever arm being zero in the y-direction. 
 
The key contributors to 𝑀௬ are propellers located along or having a component along the y-axis. If we take 
propeller 3 as an example, which is typically located at a 60° angle to the 𝑥 − 𝑎𝑥𝑖𝑠 (in the −𝑦 direction in 
our coordinate system), the lever arm length in the 𝑦-direction is: 
 

𝑙௬ = 𝑙𝑠𝑖𝑛(60°) 
 
Sincesin(60°) = √3/2, we introduce a factor of √3 into our torque expression. The total moment arm in 
the 𝑦-direction for each propeller (depending on its position) is used in the computation of 𝑀௬. Given this 
understanding, the expression for 𝑀௬, equation (19), can be derived as: 
 

𝑀௬ =
√ଷ௟ భ்ି√ଷ௟ య்ି√ଷ௟ ర்ା√ଷ௟ ల்

ଶ
                                      (19) 

 
Here: 
 𝑙 is the distance from the propeller to the center of gravity along the x-axis. 

 
The coefficients and signs are derived based on the hexacopter configuration, ensuring a positive pitch 
torque results in a pitch-down motion. 
 
 

3. Yaw Torque (𝑀௭) 
 
Yaw torque is slightly different as it arises due to the aerodynamic torque produced by each propeller, which 
is related to its rotational speed and direction. The yaw torque 𝑀௭ is the net torque about the 𝑧 − 𝑎𝑥𝑖𝑠 
(vertical axis) of the hexarotor. It's influenced by the aerodynamic torques produced by each propeller, 
which arise due to the motor exerting a torque to spin the propeller and, by Newton's third law, the propeller 
exerting an equal and opposite torque back on the motor (and thus, the hexacopter). 
 
 Aerodynamic Torque: Each propeller generates aerodynamic torque 𝜏௜ due to its rotation.  

 
 Rotation Directions: The sign of each term in the expression for 𝑀௭ is determined by the direction of 

rotation of each propeller. In a common hexacopter configuration, adjacent propellers rotate in opposite 
directions to help counteract the yaw torques they produce. 
 

 Net Yaw Torque: The net yaw torque 𝑀௭, equation (20),  is the sum of the aerodynamic torques from 
all the propellers, considering their rotation directions: 

 



 

𝑀௭ = ෍(−1)௜𝜏௜

଺

௜ୀଵ

 

𝑀௭ = −𝜏ଵ + 𝜏ଶ − 𝜏ଷ + 𝜏ସ − 𝜏ହ + 𝜏଺                                             (20) 
 
Here: 

 𝜏௜ is the aerodynamic torque produced by the ith propeller. 

The signs ensure that a positive yaw torque corresponds to a clockwise yaw motion when viewed from 
above, consistent with the right-hand rule. 

Propeller Thrust and Torque 

The thrust 𝑇௜ and aerodynamic torque 𝜏௜ produced by a propeller 𝑖 are related to its rotational speed Ω௜ as 
follows, equations (21 & 22): 

𝑇௜ = 𝑏Ω௜
ଶ                                                                          (21) 

𝜏௜ = 𝑑Ω௜
ଶ                                                                          (22) 

With: 

 𝑏 = 𝐶்𝜌𝑟௣
ସ𝜋 (Thrust factor) 

 𝑑 = 𝐶ொ𝜌𝑟௣
ହ𝜋 (Torque factor) 

 𝐶் and 𝐶ொ are the thrust and torque coefficients respectively. 

 𝜌 is the air density. 

 𝑟௣ is the propeller radius. 

Torque Vector (𝑀௙) 

The vector of the torques produced by the hexacopter about its principal axes is given by equation (23): 

𝑀௙ = ቎

𝑀௫

𝑀௬

𝑀௭

቏                                                                       (23) 

Aerodynamic Resistance Torque 

In aerial vehicles like a hexacopter, aerodynamic resistance can introduce torques that act against the rotation of 
the propellers. This phenomenon is sometimes referred to as "drag torque" or "aerodynamic torque," which is a 
force that resists the motion of the propellers through the air. 

General Form: 

The torque due to aerodynamic resistance 𝜏௔௘௥௢ for a single propeller might be expressed as: 

𝜏௔௘௥௢,௜ = 𝑘௪Ω௜ 

or, 



 

𝜏௔௘௥௢,௜ = 𝑘௪Ω௜
ଶ 

depending on the specific aerodynamic model used. 

Here: 

 Ω௜ is the angular velocity of the propeller. 

 𝑘௪ is a coefficient that represents the proportionality between the angular velocity of the propeller and 
the induced aerodynamic torque. 

When considering a hexacopter, each propeller will generate its own aerodynamic torque. The net aerodynamic 
torque 𝜏௔௘௥௢ acting on the hexacopter would then be the sum of the aerodynamic torques from all the propellers. 

Τ௔௘௥௢ = ෍ 𝜏௔௘௥௢,௜

଺

௜ୀଵ

 

Considering a hexacopter subjected to aerodynamic resistance torques during rotational motion, a model is 
proposed:  

𝜏௔௘௥௢ = 𝑀௔ =

⎣
⎢
⎢
⎢
⎡𝑘௙௔ೣ

൫𝜙̇൯
ଶ

𝑘௙௔೤
൫𝜃̇൯

ଶ

𝑘௙௔೥
൫𝜓̇൯

ଶ
⎦
⎥
⎥
⎥
⎤

                                                           (24) 

Where: 

 𝑀௔ is the aerodynamic resistance torque vector. 

 𝑘௙௔ೣ
, 𝑘௙௔೤

, 𝑘௙௔೥
: Aerodynamic constants along 𝑥, 𝑦, 𝑎𝑛𝑑 𝑧 𝑎𝑥𝑒𝑠, respectively. 

 𝜙̇, 𝜃̇, 𝜃̇: Angular velocities about 𝑥 (𝑟𝑜𝑙𝑙), 𝑦 (𝑝𝑖𝑡𝑐ℎ), 𝑎𝑛𝑑 𝑧 (𝑦𝑎𝑤) 𝑎𝑥𝑒𝑠, respectively. 

 𝑘௙௔ೣ
൫𝜙̇൯

ଶ
: Torque opposing roll, proportional to the square of roll rate. 

 𝑘௙௔೤
൫𝜃̇൯

ଶ
: Torque opposing pitch, proportional to the square of pitch rate. 

 𝑘௙௔೥
൫𝜓̇൯

ଶ
: Torque opposing yaw, proportional to the square of yaw rate. 

 

Gyroscopic Effects 

The gyroscopic effect generated by the rotating propellers of a hexacopter (or any rotorcraft) can indeed have a 
significant impact on its dynamics, especially during maneuvers involving changes in orientation. The 
gyroscopic effect arises due to the precession of the rotating propellers, which can be expressed as equation (25) 
(assuming a coordinate system where the z-axis is vertical): 

𝑀௚ = 𝐼ሚ௥௢௧௢௥  ∙ ൭ 𝜔௕௢ௗ௬ × ൥
0
0
1

൩൱ Ω௥௢௧௢௥ 



 

𝑀௚ = 𝐼ሚ௥௢௧௢௥  ∙ ൭ ቈ
𝑝
𝑞
𝑟

቉ × ൥
0
0
1

൩൱ Ω௥௢௧௢௥ = 𝐼ሚ௥௢௧௢௥ ൥
𝜃̇
𝜙̇
0

൩ Ω௥௢௧௢௥                                 (25) 

Where: 

 𝐼ሚ௥௢௧௢௥ is the rotor inertia. 

 𝜔௕௢ௗ௬ =  ቈ
𝑝
𝑞
𝑟

቉ is the angular velocity of the hexarotor in the body frame. 

 𝛺௥௢௧௢௥ is the net rotor speed, which is the sum of the angular speeds of the individual rotors, considering 
their rotation directions. 

 Rotor Speeds: 𝛺௥௢௧௢௥ = −𝛺ଵ + 𝛺ଶ − 𝛺ଷ + 𝛺ସ − 𝛺ହ + 𝛺଺ considers the rotation directions of each rotor. 
Adjacent rotors typically rotate in opposite directions to cancel out the yaw torques they produce. 

 Cross Product: The cross product  𝜔௕௢ௗ௬ × ൥
0
0
1

൩ = ቈ
𝑞

−𝑝
0

቉ = ൥
𝜃̇
𝜙̇
0

൩ gives the perpendicular vector to 𝜔 and 

the 𝑧 − 𝑎𝑥𝑖𝑠, which is consistent with the gyroscopic torque being perpendicular to the axis of rotation 
and the angular momentum vector. 

 

Mathematical Model 

Translational Dynamics 

The following mathematical model describes the translational dynamics of the hexacopter in three-dimensional 
space, considering various forces such as thrust, gravitational, and translational drag. Let's go through it in 
detail: 

The governing equation:  

𝑚𝜉̈ = 𝐹௣ + 𝐹௚ − 𝐹௧ = ∑ 𝐹                                                                 (26) 

Combining equations (12), (13), and (14), we get the following translational dynamic equations (27), (28), and 
(29):  

𝑥̈ =
(௖௢௦థ௖௢௦ట௦௜௡ఏା௦௜௡థ௦௜௡ట) ∑ ி೔ି௞೑೟ೣ

ల
೔సభ ௫̇

௠
                                              (27) 

𝑦̈ =
(௖௢௦థ௦௜௡ఏ௦௜௡టି௦௜௡థ௖௢௦ట) ∑ ி೔ି௞೑೟೤

ల
೔సభ ௬̇

௠
                                              (28) 

𝑧̈ =
(௖௢௦థ௖௢௦ఏ) ∑ ி೔ି௞೑೟೥

ల
೔సభ ௭̇

௠
− 𝑔                                                               (29) 

Where: 

 (𝑥̈, 𝑦̈, 𝑧̈) are the linear accelerations along the x, y, and z-axes respectively. 

 (𝜙, 𝜃, 𝜓) are the roll, pitch, and yaw angles respectively. 



 

 𝐹௜ is the thrust produced by the ith propeller. 

 𝑘௙௧௫ , 𝑘௙௧௬ , 𝑘௙௧௭ are the translational drag coefficients along the 𝑥, 𝑦, 𝑎𝑛𝑑 𝑧 − 𝑎𝑥𝑒𝑠 respectively, 

 𝑔 is the gravitational acceleration. 

 

Rotational Dynamics 

The following mathematical model describes the translational dynamics of the hexacopter in three-dimensional 
space, considering various torques such as those due to motor thrust, aerodynamic drag, and gyroscopic effects.  

The governing equation:  

𝐼ሚ஻𝜔̇ = −𝜔 × 𝐼ሚ஻𝜔 + 𝑀௙ − 𝑀௔ − 𝑀௚ = ∑ 𝑀                                                         (30) 

Combining equations (18), (19), (20), (24), and (25) we get the following rotational dynamic equations (31), 
(32), and (33): 

1. Roll (Around x-axis): 

𝐼௫௫𝜙̈ = 𝜃̇𝜓̇൫𝐼௬௬ − 𝐼௭௭൯ − 𝑘௙௔௫൫𝜙̇൯
ଶ

− 𝐼௥𝛺௥𝜃̇ + 𝑏𝑙(−𝛺ଶ
ଶ + 𝛺ହ

ଶ +
ିఆభ

మିఆయ
మାఆర

మାఆల
మ

ଶ
                 (31) 

2. Pitch (Around y-axis): 

𝐼௬௬𝜃̈ = 𝜙̇𝜓̇(𝐼௭௭ − 𝐼௫௫) − 𝑘௙௔௬൫𝜃̇൯
ଶ

+ 𝐼௥𝛺௥𝜙̇ + 𝑏𝑙(
√ଷ(ିఆభ

మାఆయ
మାఆర

మାఆల
మ)

ଶ
                               (32) 

3. Yaw (Around z-axis): 

𝐼௭௭𝜓̈ = 𝜙̇𝜃̇൫𝐼௫௫ − 𝐼௬௬൯ − 𝑘௙௔௭൫𝜓̇൯
ଶ

+ 𝑑(−𝛺ଵ
ଶ + 𝛺ଶ

ଶ − 𝛺ଷ
ଶ + 𝛺ସ

ଶ − 𝛺ହ
ଶ + 𝛺଺

ଶ)                    (33)  

The control input vector 𝑼் = [𝑢ଵ, 𝑢ଶ, 𝑢ଷ, 𝑢ସ]் typically represents a set of generalized control inputs, which 
might be defined to represent collective thrust and torques about the roll, pitch, and yaw axes, respectively, for a 
hexacopter control system. A general way of relating them to the motor speeds in a hexacopter can be done as 
followed:  

𝑈் = ቎

𝑢ଵ

𝑢ଶ
𝑢ଷ

𝑢ସ

቏ = Α ∙ Ωଶ                                                           (34) 

Where: 

 𝑼் = [𝑢ଵ, 𝑢ଶ, 𝑢ଷ, 𝑢ସ]் is the control input vector, typically representing total thrust, roll torque, pitch 
torque, and yaw torque respectively. 

 Α is a mixing matrix that relates the square of the motor speeds to the control inputs. 

 𝜴 = [𝛺ଵ, 𝛺ଶ, 𝛺ଷ, 𝛺ସ, 𝛺ହ, 𝛺଺]் is a vector of the rotor speeds. 

The mixing matrix Α relates the square of the motor speeds to the generated thrust and torques and depends on 
the hexacopter’s configuration (i.e., the position and orientation of each rotor). It is defined as: 



 

𝐴 =
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Where: 

 𝑏 is a thrust coefficient. 

 𝑙 is the distance from each rotor to the center of mass. 

 𝑑 is a drag coefficient. 

Explanation: 

 𝑢ଵ (Total Thrust): All rotors contribute equally to total thrust when spinning at the same speed. 

 𝑢ଶ (Roll Torque): Rotors on opposite sides of the roll axis contribute oppositely to roll torque. 

 𝑢ଷ (Pitch Torque): Rotors on opposite sides of the pitch axis contribute oppositely to pitch torque. 

 𝑢ସ (Yaw Torque): Rotors spinning in opposite directions contribute oppositely to yaw torque. 

Therefore, our control input vector 𝑈் can be represented by the following equation (35):  

𝑈் = ቎

𝑢ଵ

𝑢ଶ
𝑢ଷ

𝑢ସ

቏ = Α ∙ Ωଶ = 𝐴 =

⎣
⎢
⎢
⎢
⎡

𝑏 𝑏 𝑏
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௕௟

ଶ
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௕௟
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                        (35) 

Applying the model dynamics, 2nd order differential equations for the hexacopter’s position and orientation in 
space can be obtained and expressed as shown in equations (36-40):  

𝜙̈ =
ൣఏ̇ట̇൫ூ೤೤ିூ೥೥൯ି௞೑ೌೣథమ̇ିூೝஐೝఏ̇ା௨మ൧

ூೣೣ
                                        (36) 

𝜃̈ =
ൣథ̇ట̇(ூ೥೥ିூೣೣ)ି௞೑ೌ೤ఏమ̇ାூೝஐೝథ̇ା௨య൧

ூ೤೤
                                         (36) 

𝜓̈ =
ൣథ̇ఏ̇൫ூೣೣିூ೤೤൯ି௞೑ೌ೥టమ̇ା௨ర൧

ூ೥೥
                                                    (36) 

𝑥̈ =
ൣି௞೑೟ೣ௫̇ା௨ೣ௨భ൧

௠
                                                                         (36) 



 

𝑦̈ =
ൣି௞೑೟೤௬̇ା௨೤௨భ൧

௠
                                                                         (36) 

𝑧̈ =
ൣି௞೑೟೥௭̇ା௖௢௦ఏ௖௢௦థ൧

௠
− 𝑔                                                         (36) 

 

Where: 

 𝑢௫ = 𝑐𝑜𝑠𝜙𝑐𝑜𝑠𝜓𝑠𝑖𝑛𝜃 + 𝑠𝑖𝑛𝜙𝑠𝑖𝑛𝜓  

 𝑢௬ = 𝑐𝑜𝑠𝜙𝑠𝑖𝑛𝜃𝑠𝑖𝑛𝜓 − 𝑠𝑖𝑛𝜙𝑐𝑜𝑠𝜓  

SIMULATIONS AND RESULTS 
Navigating through the enigmatic atmospheres and landscapes of distant celestial bodies, such as Titan, Saturn's 
largest moon, presents an exhilarating frontier for aerospace research and exploration. Titan, encapsulated in its 
thick, nitrogen-dense atmosphere, propounds a unique aerodynamic environment, distinctively different from 
Earth, thereby warranting meticulous research and simulations to decipher its aerial mysteries. In this section, 
we delve into meticulous simulations, aiming to comprehend and analyze the translational and rotational 
dynamics of a hexacopter navigating through Titan’s exotic atmospheric conditions. Our motive is not merely to 
conquer the challenges of autonomous flight in an alien environment but also to unravel the secrets hidden 
within Titan’s lakes, dunes, and potentially, its subsurface ocean. Harnessing the mathematical models and 
control theories, we intend to create a simulation environment that mimics the physical and atmospheric 
conditions of Titan. This helps us test, validate, and improve control strategies so that the hexacopter can safely 
and successfully navigate through Titan's atmosphere. This advances our understanding of this mysterious 
moon and opens new avenues for solar system exploration in the future. We will conclude three different 
simulations, Free Fall, Take-Off and Forward Motion Dynamics and analyze the results of the hexacopter’s 
dynamics on Titan and compare them to that on Earth.   

STATE SPACE MODEL 

In this section, we introduce the state space model equations for our hexacopter, specifically developed for 
integration with MATLAB. This compact yet powerful representation captures the essential dynamics of the 
drone, encompassing variables like position, velocity, and orientation, vital for navigating the unique 
atmospheric conditions of Titan. Tailored for computational efficiency and precision, these equations are 
designed to seamlessly integrate with MATLAB's robust simulation and control toolboxes, enabling us to 
simulate, analyze, and optimize the hexacopter's performance in an environment that closely mimics the 
challenging conditions of Saturn's largest moon. The equations are derived considering the dynamic model 
previously derived and can be seen in equations below.  

State Variables Vector:  

𝑋 = ൣ𝜙 𝜙̇ 𝜃 𝜃̇ 𝜓 𝜓̇ 𝑥 𝑥̇ 𝑦 𝑦̇ 𝑧 𝑧̇൧ 

State Space Model Equations:  

𝑥ଵ = 𝜙          𝑥ଶ = 𝑥ଵ̇ = 𝜙̇          𝑥ଷ = 𝜃          𝑥ସ = 𝑥ଷ̇ = 𝜃̇          𝑥ହ = 𝜓          𝑥଺ = 𝑥ହ̇ = 𝜓̇          𝑥଻ = 𝑥          
𝑥଼ = 𝑥଻̇ = 𝑥̇          𝑥ଽ = 𝑦          𝑥ଵ଴ = 𝑥ଽ̇ = 𝑦̇          𝑥ଵଵ = 𝑧          𝑥ଵଶ = 𝑥ଵଵ̇ = 𝑧̇      



 

                                                      𝑥ଶ̇ = 𝜙̈ = 𝑎ଵ𝑥ସ𝑥଺ + 𝑎ଶ𝑥ଶ
ଶ + 𝑎ଷΩ௥𝑥ସ + 𝑏ଵ𝑢ଶ                                               (37) 

𝑥ସ̇ = 𝜃̈ = 𝑎ସ𝑥ଶ𝑥଺ + 𝑎ହ𝑥ସ
ଶ + 𝑎଺Ω௥𝑥ଶ + 𝑏ଶ𝑢ଷ                                               (38) 

𝑥଺̇ = 𝜓̈ = 𝑎଻𝑥ସ𝑥ଶ + 𝑎଼𝑥଺
ଶ + 𝑏ଷ𝑢ସ                                                               (39) 

𝑥଼̇ = 𝑥̈ = 𝑎ଽ𝑥଼ + 𝑏ସ𝑢ଵ𝑢௫                                                                            (40) 

𝑥ଵ଴̇ = 𝑦̈ = 𝑎ଵ଴𝑥ଵ଴ + 𝑏ସ𝑢ଵ𝑢௬                                                                       (41) 

𝑥ଵଶ̇ = 𝑧̈ = 𝑎ଵଵ𝑥ଵଶ +
஼௢௦థ஼௢௦ఏ

௠
𝑢ଵ − 𝑔                                                          (42) 

To facilitate implementation into MatLab, we have defined the following into our model:  

𝑎ଵ =
ூ೤೤ିூ೥೥

ூೣೣ
         𝑎ଶ =

ି௄೑ೌೣ

ூೣೣ
         𝑎ଷ =

ିூೝ

ூೣೣ
         𝑎ସ =

ூ೥೥ିூೣೣ

ூ೤೤
         𝑎ହ =

ି௄೑ೌ೤

ூ೤೤
         𝑎଺ =

ିூೝ

ூ೤೤
         𝑎଻ =

ூೣೣିூ೤೤

ூ೥೥
 

𝑎଼ =
ି௄೑ೌ೥

ூ೥೥
         𝑎ଽ =

ି௄೑೟ೣ

௠
         𝑎ଵ଴ =

ି௄೑೟೤

௠
         𝑎ଵଵ =

ି௄೑೟೥

௠
         𝑏ଵ =

௟

ூೣೣ
         𝑏ଶ =

௟

ூ೤೤
         𝑏ଷ =

௟

ூ೥೥
         

𝑏ସ =
ଵ

௠
                                                                                                                                                                 (43) 

ENVIRONMENT AND HEXACOPTER PARAMETERS 

Prior to presenting the dynamics observed in our simulations, it is pertinent to outline the environmental 
conditions and hexacopter parameters that were established. These form the basis of our comparative analysis: 

 Environmental Conditions: 

 Earth: 

 Gravitational acceleration: 9.81 m/s² 

 Atmospheric density: 1.225 kg/m³ 

 Titan: 

 Gravitational acceleration: 1.352 m/s² 

 Atmospheric density: 5.4 kg/m³ 

 Hexacopter Design Parameters: 

 Mass: 1.8 kg 

 Rotor diameter: 0.4 meters (larger for Titan's atmosphere) 

 Rotor configuration: Symmetrical hexagonal 

 Rotor count: 6 

 Physical and Inertial Properties: 

 Length, width, height: 1.2 m, 1.2 m, 0.6 m (similar to NASA's Ingenuity) 



 

 Moments of inertia (𝐼௫௫, 𝐼௬௬, 𝐼௭௭): Estimated based on drone size and mass distribution 

FREE FALL DYNAMICS 

Initial Conditions for Free-Fall Dynamics Simulation: 

 Starting altitude: Set to a predefined value for both Earth and Titan simulations. 

 Initial velocities: Zero in all directions, ensuring a true free-fall scenario from a stationary state. 

 Angular orientation: Initially level with no roll, pitch, or yaw angles applied. 

 Rotational velocities: Zero, indicating no initial angular momentum. 

The simulation results depicted in Figure 3 exhibit the dynamics of the hexacopter in a free-fall scenario on both 
Earth and Titan. In the absence of wind resistance and with gravity as the sole acting force, the hexacopter's X 
and Y positions remain constant over time, indicating no lateral movement. This stability suggests an initial 
state of rest in the horizontal plane or perfectly balanced forces. In contrast, the Z position demonstrates a linear 
descent, a characteristic of free-fall under gravitational pull. The slower descent rate on Titan corresponds with 
its weaker gravitational field compared to Earth's. Roll angles for both environments remain unchanged, which 
implies no rotational movement around the longitudinal axis. These conditions mirror a controlled environment 
where the hexacopter is released with zero initial velocity or angular momentum, allowing for a direct 
comparison of gravitational effects in the absence of aerodynamic forces such as lift or wind.  

 

Figure 3. Free Fall Dynamics of TitanWing Earth Vs. Titan 

X and Y Position (Earth vs. Titan): The plots for the X and Y positions on Earth and Titan show constant 
values, indicated by the horizontal lines. This suggests that the hexacopter maintains a constant position in 
the X and Y directions over time in both environments, which is not entirely realistic unless the hexacopter 
is designed to hover at a fixed point without any disturbance. 

Z Position (Earth vs. Titan): The Z position plots for Earth and Titan show a linear decrease over time, 
suggesting the hexacopter is falling straight down due to gravity without any lift being generated to 
counteract it. The rate of descent on Titan appears slower than on Earth, which is consistent with Titan's 
lower gravity. However, if the hexacopter is supposed to hover or fly, this suggests an issue with the 



 

simulation setup where the generated lift is not properly accounted for, or the control inputs are not set to 
maintain altitude. 

Roll (Earth vs. Titan): The roll plots for both environments show a constant value, which might suggest 
that there's no rolling motion of the hexacopter, or it's perfectly balanced with no disturbance. 

TAKE_OFF DYNAMICS 

Following our initial analysis of free-fall dynamics, we have now extended our study to include the take-off 
phase. The additional simulation insights complement the previous findings and provide a comprehensive view 
of the hexacopter's performance under a takeoff scenario. 

Assumptions and Parameters: 

 Design Parameters: The hexacopter's physical and operational parameters remain consistent with those 
used in the free-fall simulation. This includes the mass, rotor dimensions, and motor specifications. 

 Initial Conditions: The initial take-off speed was set at 2 m/s upwards, with no initial velocity in the 
horizontal axes. 

 Simulation Duration: A time span of 10 seconds post-take-off was simulated to capture the dynamics 
adequately. 

 Environmental Settings: Earth's standard gravity and atmospheric density were compared against 
Titan's reduced gravity and higher atmospheric density. 

 Aerodynamic Coefficients: A lift coefficient (C_lift) of 0.8 was applied, which is typical for rotorcraft. 
The drag coefficient (C_drag) was set at 0.6 after initial simulations indicated numerical stability issues 
with higher values. 

From Figure 4, the simulation revealed a consistent take-off trajectory on both Earth and Titan, with the 
hexacopter reaching a significantly higher altitude on Titan due to its lower gravity and thicker atmosphere. 
Implementing a cap on the drag force at 100 N prevented integration errors and allowed the simulation to run 
without issues. The absence of horizontal motion in the take-off simulation simplified the vertical dynamics, 
allowing for a focused analysis on ascent performance. 



 

 

Figure 4. Takeoff Dynamics of TitanWing Earth Vs. Titan 

The take-off simulation has affirmed the hexacopter's operational capabilities, exhibiting stable and predictable 
ascent under the modeled conditions. It also shows the influence of environmental factors on aerodynamic 
forces, advocating for environment-specific adjustments in design and control strategy. Future work could 
potentially investigate the refinement of the drag force model and correlate those findings with empirical data. 

FORWARD MOTION DYNAMICS 

In this section, we present the simulation results for the hexacopter's forward movement dynamics without 
active stabilization systems. The simulation parameters were set to reflect the initial conditions of a forward 
speed of 1 m/s and an upward take-off speed of 2 m/s. The forward thrust was incremented to 10 N to analyze 
the natural response of the hexacopter under these conditions. The results can be seen in Figure 5 below.  



 

 

Figure 5. Forward Motion Dynamics of TitanWing Earth Vs. Titan 

The following observations were made from the simulation results: 

X Position (Forward Movement):  

On Earth, the hexacopter initially moves forward but then reverses direction. This could indicate that the 
forward thrust is insufficient to overcome gravitational pull when combined with the pitch angle, or it may 
suggest an issue with the thrust direction or aerodynamic drag being modeled. 

On Titan, the hexacopter accelerates forward continuously, which is expected due to Titan's lower gravity and 
potentially its thicker atmosphere (assuming the drag coefficient is set appropriately for Titan's conditions). 

Y Position (Lateral Movement): 

Both Earth and Titan simulations show no lateral movement as expected, since there are no forces pushing it 
sideways. 

Z Position (Vertical Movement): 

The hexacopter ascends on both Earth and Titan, with Titan's ascent being less steep due to its lower gravity. 
This is consistent with a positive lift that exceeds gravitational pull. 

Roll: 

The roll angle increases over time in both simulations, which suggests that there is a persistent unbalanced 
moment causing the hexacopter to roll. This could be due to asymmetrical thrust, a misalignment in the rotors, 
or the absence of a roll stabilization mechanism. 



 

Pitch: 

The pitch angle shows a negative value increasing in magnitude over time for both Earth and Titan, which 
suggests the hexacopter is tilting forward more as time progresses. This is expected due to the simulation's 
control input that continuously increases pitch to simulate forward motion. 

Yaw: 

The yaw angle remains constant, indicating no rotation around the vertical axis, which is also expected due to 
the absence of yaw control inputs. 

The simulations have revealed that while the hexacopter can generate lift and forward thrust, it exhibits roll 
instability that would need to be corrected in a real-world application. The pitch control appears to function as 
intended, tilting the hexacopter forward to promote forward motion. The continuous pitch down without 
stabilization could lead to an uncontrollable increase in forward speed and eventual descent. A control system 
implementation is imperative for practical flight stability and maneuverability. 

CONCLUSION 
We have explored the ideation, design, and simulation stages of an unmanned aerial vehicle (UAV) called 
TitanWing hexacopter, which is intended to be deployed on Titan, Saturn's most interesting moon. First on our 
adventure, we had to choose a suitable UAV configuration. After some research, we determined that a 
hexacopter was the best option because of its better lift capacity and redundancy in Titan's dense atmosphere. 

Our research was primarily focused on understanding the behavior of the hexacopter in the different 
environments of Titan and Earth through rigorous simulation and dynamic modeling. We extrapolated the 
vehicle's translational and rotational dynamics through the lens of our models, revealing potential difficulties 
and performance subtleties in Titan's thick atmosphere. The simulations revealed a significant difference in the 
two celestial bodies' gravitational and atmospheric effects on the hexacopter's dynamics, highlighting the need 
for environment-specific design modifications. 

According to our research, the hexacopter can provide enough lift and forward thrust, but in the absence of an 
active stabilization device, it rolls unstable. This is a crucial realization because it emphasizes how important it 
is to have sophisticated control systems to guarantee flight stability and maneuverability, which are essential for 
any practical use. Furthermore, even though the pitch control simulations were successful in advancing the 
hexacopter's forward motion, they also showed that the hexacopter tended to tilt forward more and more with 
time, requiring strong control techniques to reduce the possibility of an uncontrollable drop. All MatLab 
Simulations used can be found in the appendix. 

To sum up, the TitanWing project has established a fundamental structure for upcoming investigations into 
UAV uses beyond Earth. In addition to offering insightful information about the aerodynamic viability of 
hexacopter flights in alien environments, our work has set the path for future technological developments. The 
implications of our research go beyond scientific discovery as we stand on the cusp of a new era of space 
adventure; they provide a glimpse into the future of interplanetary exploration and the potential role that 
unmanned aerial vehicles (UAVs) may play in helping us discover the mysteries of far-off worlds. 
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